Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

نویسندگان

  • Day-Uei Li
  • Simon Ameer-Beg
  • Jochen Arlt
  • David Tyndall
  • Richard Walker
  • Daniel R. Matthews
  • Viput Visitkul
  • Justin A. Richardson
  • Robert K. Henderson
چکیده

We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 0.18-µm CMOS Array Sensor for Integrated Time-Resolved Fluorescence Detection.

This paper describes the design of an active, integrated CMOS sensor array for fluorescence applications which enables time-gated, time-resolved fluorescence spectroscopy. The 64-by-64 array is sensitive to photon densities as low as 8.8 × 10(6) photons/cm(2) with 64-point averaging and, through a differential pixel design, has a measured impulse response of better than 800 ps. Applications inc...

متن کامل

Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy.

We present the generation of a picosecond polarized supercontinuum in highly birefringent multimodal microstructured fiber. The initial steps of the spectral broadening are dominated by intermodal four-wave mixing controlled by the specific fiber design. Using a low repetition rate ultra-stable solid state laser, a pulse train well-suited for versatile time-domain fluorescence lifetime imaging ...

متن کامل

Time-Correlated Fluorescence Microscopy Using a Room Temperature Solid-State Single Photon Sensor

In this paper we present a two-photon fluorescence lifetime imaging microscopy (FLIM) system based on a two-dimensional single photon avalanche diode (SPAD) array fabricated in CMOS [1] [2]. To the best of our knowledge, this is the first demonstration of two-photon FLIM based on a CMOS detector. The sensor reported here exhibits picosecond accuracy, operates at room temperature, and requires n...

متن کامل

Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.

A compact real-time fluorescence lifetime imaging microscopy (FLIM) system based on an array of low dark count 0.13microm CMOS single-photon avalanche diodes (SPADs) is demonstrated. Fast background-insensitive fluorescence lifetime determination is achieved by use of a recently proposed algorithm called 'Integration for Extraction Method' (IEM) [J. Opt. Soc. Am. A 25, 1190 (2008)]. Here, IEM i...

متن کامل

Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012